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1. INTRODUCTION 

For lunar and planetary missions, it is desirable to 
formulate analytical methods for changing launch and 
powered-flight parameters in order to compensate for 
firing-time delays which may occur at the launching 
complex during an attempt to launch at a preselected 
standard firing time. Trajectory characteristics determine 
the amount of time delay that can be tolerated and there- 
fore prescribe a ‘‘fn-ing window,” a time during which 
the vehicle may be launched without violating any of 
several constraints. 

Parking-orbit trajectories (Ref. 1) will be discussed, as 
coast-time variation is a strong and essential parameter 
to control. In order to correct direct-ascent trajectories 
(Ref. 1) for launch-time delays, the vehicle generally must 
fly a steeper trajectory, which would result in undesirable 
performance. 

This Report is designed to indicate the geometric 
aspects of the launch-on-time problem and to suggest 
how appropriate parameters might actually be controlled 
in order to effect a successful mission in the presence of 
firing-time delays. 

II. SUMMARY 

Various schemes might be adopted to handle the 
launch-on-time problem, but the ensuing discussion will 
be concerned with one particular method that has several 
desirable features. Equations will be presented which 
indicate how certain trajectory parameters must be 
changed in order to correct for launch-time errors. The 
method and associated equations, though not exact, are 
very good appmlri_mati_ogs which field favnrahle 
results. 

Firing azimuth and parking-orbit coast-time correction 
are the primary compensating parameters. After a launch- 

time delay has occurred, the vehicle must be flown along 
a new or corrected launching azimuth. The vehicle is 
then guided to reobtain standard parking-orbit condi- 
tions. It should be noted here that use of the word 
“standard” throughout this Report will refer to available 
quantities associated with the standard, no-launch-time- 
error trajectory Cnnst-time correctinn compensates for 
Earth rotation relative to the target. Final-stage burning 
is terminated when the vehicle achieves the standard 
injection energy (Ref. 1). 
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111. LAUNCHING AZIMUTH 

The launching or firing azimuth a, is the angle meas- 
ured clockwise from north to the projection of the missile 
thrust vector onto the local geodetic horizontal plane. It 
will be necessary to determine a new firing azimuth as a 
function of the launch-time delay At,, so that the trajec- 
tory plane will contain the target at encounter. For lunar 
trajectories, this may be done by determining a launching 
azimuth such that the plane of motion defined at injection 
contains the position vector of the Moon defined at the 
time of expected lunar encounter. For interplanetary tra- 
jectories, the launching azimuth will be chosen so that 
the plane of motion defined at  injection contains the 
asymptote to the standard departing hyperbola from 
Earth. 

A. Nonrotating Spherical Earth 

Consider the simple model of a nonrotating spherical 
Earth shown in Fig. 1. Let S represent a unit vector in 
the desired trajectory plane. In the case of lunar trajec- 
tories, S lies along the position vector of the Moon at the 
time of expected lunar encounter. The unit vector r, which 
points from the center of the Earth through the launching 
site, is given by 

Y = cos $, cos 0, i + cos +, sin 0, j + sin qL k (1) 

t' 

W 

Figure 1. Coordinate system and associated quantities 

where qL and 0, are the geocentric latitude and right 
ascension of the launch site, and i i k are unit vectors 
defined by a space-fixed, equatorial, rectangular coordi- 
nate system with the X-axis towards the vernal equinox r. 
Right ascension is always measured in the equatorial 
plane, positive to the east, from the vernal equinox to 
the meridian of the point in question. 

The unit vector a, pointing down the firing azimuth, is 
given by 

a = secq,  {[k x Y ]  sinu, - [(k x Y) X I ]  cosa,} ( 2 )  

I t  is now possible to determine the unit normal vector 
N to the plane of motion: 

N = r X a  (3) 

N = (sin el, cos uL - cos 0, sin $I,  sin a,) i 

- (cos 0, cos u ~ ,  + sin 0, sin $ I ,  sin u~,) j 

+ (cos sin u,) k (4) 

For a nonrotating, spherical Earth, thc correct firing 
azimuth may be obtained by solving the equation 
N * S  = 0 for uL: 

( 5 )  
1 S,, sin 8, - S,, cos 0 ,  

6. Rotating Spherical Earth 

The actual firing azimuth for a rotating Earth will, in 
general, lie slightly away from east of the azimuth given 
by Eq. 5. This deviation is essentially due to the initial 
crossrange-rate component, Zr,,3, present at launch. Fig- 
ure 2 displays an inertial, rectangular, launch-site coordi- 
nate system, defined at the instaFt of launch.' If 
expressions are developed for 2 ,  and Z ,  at injection, then 
the amount by which N has been rotated may be 
determined. 

Parameters R, V, and r define vehicle position, inertial 
velocity, and path angle of the inertial-velocity vector. If 
drag is neglected and the assumption is made that vehicle 
thrust is maintained parallel to the X,Y,, plane, then 

-~ 

'Y,, is perpendicular to the spherical Earth model, X I .  points along 
the downrange or azimuthal heading, and Z ,  = XI, X YI.. 

2 
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4= 

Figure 2. launch site and vehicle coordinates 

The subscript I refers to the values at injection, and the 
injection angular momentum C,, is equal to R,V, cos r,. 
Equation 9 is a valid approximation, as p is a small 
rotation. In fact, for all firing azimuths within range- 
safety limits for the Atlantic Missile Range, the rotation 
does not exceed 0.05 rad. 

Crossrange and crossrange rate were computed from 
Eq. 7 and 8 and compared with actual values obtained 
from an elaborate JPL powered-flight trajectory program. 
The comparison indicated an amplitude discrepancy and 
phase shift. The Appendix shows how this difficulty was 
partially eliminated by considering the plumb-line coordi- 
nate system that is actually used to define the standard 
vehicle thrust plane. 

An observer located far above the launch site and 
looking in the -YL direction would observe the trajectory 
curving to the right (for a southeast firing) as the vehicle 
accelerates downrange, after being launched with an 
eastward inertial velocity imparted by Earth rotation. 

In order that the actual plane of motion defined at 
injection contain the desired S, it is necessary that 

( N  + p x N )  s = 0 (10) 
Solution of Eq. 10 for launching azimuth uL yields: 

where K may be thought of as a time-averaged value of 
p R 3  over the powered flight from launch to injection. 
Integration of Eq. 6 leads to 

Z L  N iLn cos ( K S  t )  (7) 

Z, K - H ~ ~ ~  sin (KW t )  (8) 

The initial crossrange-rate component iLn is equal to the 
product of the Earth's eastward surface velocity at  the 
!an& site L?:! &e cc2six? 9f **e $.rh-?g 2Zimut.h q. 

C. Rotation of Powered-flight Plane of Motion 

Imagine that the vehicle is flown to injection (for a 
nonrotating Earth) and then an instantaneous Z L  is 
applied. This would have the effect of rotating the plane 
of motion defined at injection positively about R by an 
amount -2, (V cos r)-l. The application of an instan- 
taneous 2, at injection would be equivalent to a rotation 
of the powered-flight plane about a line through the 
center of the Earth and parallel to V by an amount 
Z L  (R cos r)-,. It would therefore seem appropriate to 
define the rotation vector p: 

(9)  

Equation 11 refines Eq. 5 so as to include rotation of the 
powered-fight plane of motion. The right ascension of 
the launch site eL is related to launch-time error AtL by: 

OL = @Lg + O, At, (12) 

where eL8 is the launch-site right ascension at  the stand- 
ard fuing time and me is the average angular velocity of 
the Earth. 

D .  Approximate Method for Obtaining 
Rotation Vector 

The amount of rotation of the powered-fight plane of 
motion depends upon the launching azimuth. Neglecting 
oblateness, there would be no rotation for trajectories 
fired due east and maximum rotation for those launched 
due south. Therefore, in order to compute the f i n g  azi- 
muth from Eq. 11, p must be known; but, in order to 
determine p, the firing azimuth must be known. This 
situation may be handled without difficulty by first com- 
puting the firing azimuth from Eq. 5. The use of Eq. 5 
for the computation is consistent with the assumption 
that the vehicle is flown to injection (for a nonrotating 
Earth) and that instantaneous Z L  and Z L  are then applied 

3 
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Figure 3. In-plane geometry 

in order to determine the rotation of the powered-flight 
plane of motion. 

The rotation vector p depends upon C,,, Z,,, V I ,  ZI,,, 
and R,; C,, is equal to the standard injection angular 
momentum, but something more must be said for the 
remaining quantities. In computing ZL,  and Z,,, the time 
from launch to injection t ,  is given by 

t ,  = t,,- + R, I/;’ [COS-’ (Y, S , )  - COS-’ (Y S ) ]  

The first term on the right-hand side of Eq. 13 is the 
standard time from launch to injection, and the second 
term is the parking-orbit coast-time correction. The stand- 
ard circular parking-orbit radius and velocity are R, and 
V,,  respectively; rS is the unit position vector of the 
launch site at the standard launching time, and r points 
through the launch site after the Earth has rotated to a 
new position which corresponds to the launch-time delay 
At,. For lunar trajectories, S,* and S are, respectively, the 
unit position vectors of the Moon at the standard and 
launch-late times of expected lunar encounter. For inter- 
planetary trajectories, S ,  = S, a unit vector along the 
asymptote to the departing geocentric hyperbola. More 
will be said about the coast-time correction in Section IV. 

Firing azimuth obtained from E?. 5 is used to compute 
Z,,,, so that, with Eq. 13, ZL, and Z,,, may now be deter- 
mined for the launch-late trajectory. In order to determine 
R ,  and V,, it is assumed that the Earth is spherical and 
nonrotating and that injection occurs at the standard 
angle from S. Figme 3 illustrates the #plane geometry, 
where 

(13) 

RI, S ,  

R l s  
a = cos-1 - 

Equation 14 requires information available from the 
standard trajectory printout. Define a unit vector 9 nor- 
mal to S and given by 

(Y * S ) S  - I  

9 = [ l  - ( I  * S ) * ] %  

Should a S > 0, it will be necessary to use (-9) defined 
by Eq. 15. Let a = CY + r,,; then, 

R,  = RI, [cos a S + sin a 91 

V ,  = V I S  [sin fl S - cos 0 91 

(16) 

(17)  

Now p can be determined for use in Eq. 11. Figure 4 
displays the amount by which the launching azimuth 
must be altered away from east in order to compensate 
for the eastward velocity of the launching site. The dashed 
curve obtained from Eq. 5 indicates launching azimuth 
for a typical lunar trajectory for various right-ascension 
or time locations of the launching site but assumes that, 
at the instant of launch, the Earth is nonrotating. The 
solid curve obtained from Eq. 11 gives the more accurate 
values of firing azimuth, as a function of the launch-time 
error, for a rotating Earth. 

Figure 4 illustrates the effect of Earth rotation upon 
firing azimuth, but it provides only a fraction of the com- 
plete picture of firing-azimuth behavior with launch time. 
Imagine a situation defined by assuming = 0, +,, = 30 
deg, and S = - (1  - S ; ) ” i  + S,k .  This situation is de- 
scribed by Fig. 5,  which indicates the variation of firing 
azimuth with launch time for several values of S,. (Equa- 
tion 5 was used to generate Fig. 5.)  Although there are 
two possible firing azimuths for any given firing time, 
only the easterly values have been shown in Fig. 5. If + 
represents the declination of S, then + = sin-’ S,, and the 
curves of Fig. 5 may also be considered as curves of 
constant +. The curves exhibit two characteristic patterns, 
with the critical boundary occurring at 1 + 1  = I + L I .  
Note that for \ + I  I+,,[, it is possible to fire at all 
azimuths (within range-safety limits). For 191 > I+,,I, a 
symmetric band of firing azimuths about due east is 
eliminated. Launch-on-time considerations generally 
favor launching when the rate of change of firing azimuth 
with launch is a minimum, if possible, as the associated 
firing windows are usually longer and the tracking 
geometry varies at the slowest possible rate. Accordingly, 
it is least desirable to launch when the &,,/atL is very 
large. 

4 
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- 2  - I  0 I 2 3 -3 
At,,  hr 

Figure 4. Effect of Earth rotation upon firing azimuth 

In theory, there are always two possible firing azimuths 
for any given firing time. From a practical standpoint, 
range-safety restrictions for the Atlantic Missile Range 
may permit a band of firing azimuths from 46 to 114 deg 
east of north. Although some westerly firings are allow- 
able from the Pacific Missile Range, they may well be 
undesirable in view of smaller payloads and inadequate 
tracking facilities. Presently, good tracking facilities exist 
for trajectories launched to the southeast from the AMR 
from about 95 to 110 deg. For most lunar and planetary 
missions, this would correspond to a practical &ring win- 
dow of between one and two hours. 

I 

20 2 16 

Figure 5. Firing azimuth vs launch time for 
symmetric situation 

Although Fig. 5 illustrates firing-azimuth behavior with 
launch time for what appears to be a very special situa- 
tion, it is actually representative of any real situation 
(for +, = 30 deg) by a simple translation of the launch 
time axis T h i s  i s  apparent when it i s  reali7Pd that any S 
vector may be expressed in the form assumed for Fig. 5 
by performing an imaginary rotation of the equatorial 
coordinate axes in order to null S,. 

E. Taylor's Series Approximation 

The correct launching azimuth may be obtained accu- 
rately e-launch-time delays of less than half an hour 
or so by using the first three terms of a Taylor's series. 
For larger At,, successive applications of Eq. 18 will 
suffice. 

isL N -I- au At, -I- --At; I azu, 
at, 2 at; 

Relatively short expressions for the partial derivatives 
may be obtained readily from Eq. 5. 

5 
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auL - 
at, 

[ (1 - S;) sin qL - m 5, cos qL] - _  
1 1 ~  + [ m  sin qL - S, cos qL]*  (19) 

where 

rn = S, COS OLs + S, sin OLs 

n = S, sin OLY - S, cos OL, 

Note that whenever m = S;' (1 - S:) tan + L  and the 
denominator of Eq. 19 is non-zero, the rate of change of 
firing azimuth with respect to launch time is zero. Given 
that I I > I + L  1 ,  it is possible to determine the firing time 
associated with the flat portion of the curves of Fig. 5. 

Differentiating again with respect to launch time, 

a 2  - uL = 11 D-' S, W: cos qL - 20,  N D-2 
at; 

x [ rn ti cos? qL + R S, sin qL cos qL] (20) 
where N and D are the numerator and denominator of 
Eq. 19. 

Finally, the most accurate method for computing the 
correct launching azimuth would be to evaluate the par- 
tial derivatives from Eq. 11. In this way, the change in 
the amount of rotation of the powered-flight plane 
of motion, with changing launch azimuth, would be 
included. This effect is shown by Fig. 4. Note how the 
two curves slowly diverge as the firing azimuth swings 
away from east. Several long equations (not presented in 
this Report) are generated by differentiating Eq. 11 with 
respect to launch time. 

IV. COAST-TIME CORRECTION 

A parking-orbit coast-time correction Atc must be made 
in order to compensate for Earth rotation relative to the 
prescribed asymptote S. Note in Fig. 1 how the in-plane 
angle from launch to the asymptote diminishes as the 
launch site moves from r ,  to r .  For lunar trajectories, this 
effect is illustrated in Fig. 6, where the standard and 
launch-late planes of motion are shown coplanar, in order 
to illustrate the in-plane geometry. The coast-time correc- 
tion is therefore given by 

/ 
I. 

/ v  
I 
I 
I 

Figure 6. lunar coast-time correction geometry 

(21) At, = R,T/;'[ cos-' ( I ,  4,) - cos-' ( r  S ) ]  

All quantities in Eq. 21 have been previously defined in 
Section 111-D. Should a - S > 0 for rs and r, it is necessary 
to use -At,  as defined by Eq. 21. 

Figure 7 illustrates the geometry for interplanetary 
trajectories. Note that S = S, ,  the asymptote to the stand- 

s=% 

Figure 7. Planetary coast-time correction geometry 

6 
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ard departing geocentric hyperbola. Strictly speaking, the 
exact choice for S should be slightly different from S,, as 
the heliocentric geometry has undergone a very small 
change after the passage of a launch-time delay. However, 
since the purpose of this Report is to obtain good analyti- 
cal approximations, no exact analysis will be conducted 
here in order to arrive at a better choice for S. 

Note that Eq. 21 could easily be mechanized to com- 
pute At ,  as a function of AtL. For interplanetary trajec- 
tories, the only variable on the right-hand side of the 
equation is r, which is certainly a function of AtL. For 
lunar trajectories and launch-time delays that do not 
exceed a few hours, S varies approximately as 

where Rm8 and Vm, are the geocentric position and 
velocity of the Moon at the standard time of lunar 
encounter. Equation 22 assumes that, since the standard 
injection energy is maintained, the flight time from injec- 
tion to encounter does not significantly change for nom- 
inal launch-time delays. It also neglects At,, which is 
Small in comparison to AtL.  

Figure 8 illustrates coast-time correction (based upon 
a 100-nautical-mile circular parking orbit) vs launch time 
for the symmetric situation described by Figure 5. The 
discontinuity at mL = 12 results from considering only 
the easterly launching azimuths (0 < uL < 180 deg). Fig- 
ure 8 also assumes that whenever the downrange angle 
from r to S is less than 180 deg, then the vehicle must 
coast around the Earth before departure. The value of 
this minimum downrange angle is dependent upon the 
type of vehicle and the particular mission (Ref. 1). For 

this angle may vary from about 150 to 200 deg, and 180 

-_-.. i i i a i j  of &C cziiec: i;&ic!~s 2 ~ 2  ~ ~ s ~ i ~ ; ~ t e d  missi~ns, 

deg was merely chosen as a typical value. For all pos- 
sible parking-orbit trajectories, 0 < I l? t , /Z tL I < w e R ,  V,-'. 
Typically, &/atL 2: - 0.05 about the nominal firing time 
for many of the envisaged space missions that employ 
the parking-orbit technique. 

A$, hr 

Figure 8, Coast-time correction vs launch-time delay 
for symmetric situation 

7 
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V. GUIDANCE THEORY 

Consider, for the sake of discussion, a two-stage vehicle 
with second-stage restart capability. Figure 9 shows the 
in-plane points of interest for a typical powered-flight 
trajectory from launch to injection. 

With the occurrence of a launch-time delay, a new 
firing azimuth and coast-time correction would be 
obtained and relayed to the vehicle guidance system. The 
vehicle would rise vertically from the launching pad and 
perform a roll maneuver in order to arrive at the desired 
azimuthal heading, before initiating a preset pitch pro- 
gram designed to control the vehicle until aerodynamic 
effects had become negligible. The remaining portion of 
the first stage could then be guided either inertially or by 
radio command. Yaw-error guidance might be accom- 
plished by nulling a signal proportional to R X V S .  
Pitch guidance could steer the vehicle to attain the 
standard value of angular momentum when a shutoff 
signal terminates first-stage burning upon reaching the 
standard energy. 

After a short coasting period, the second stage would 
be ignited and guided to achieve the standard circular 
parking-orbit altitude and velocity. In addition to the 
coast-time correction for launch-time delay, an adjust- 
ment would be made to the second-stage restart time in 
order to compensate for downrange errors arising from 
performance dispersions prior to parking-orbit entry. 

The final injection phase would place strict require- 

------------IL -- = e- 
# 

rI 

I 
P 

I. LAUNCH 

II. FIRST-STAGE SEPARATION 

III. SECOND-STAGE IGNITION 
E. CIRCULAR PARKING-ORBIT ENTRY 
P. SECOND-STAGE RESTART 

YI. INJECTION (DEPARTING GEOCENTRIC CONIC DEFINED) 

Figure 9. Powered-flight profile 

ments on the guidance system (Ref. 2). Yaw guidance 
would still control the plane of motion to contain S .  In 
spite of position dispersions about the injection point, 
pitch guidance would control the inertial path angle r 
to maintain the desired asymptote. Final engine shutoff 
would be commanded when, for example, V2 - 2pR-’ 
reached the standard value of twice the total energy-per- 
unit mass. The injection conic has now been defined. 
Radio tracking data could be used to determine a mid- 
course maneuver (Ref. 3), necessary to correct for injection 
deviations which may have arisen from component and 
other possible error sources. 

8 
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VI. RESULTS 

The equations given in this Report are designed to 
indicate an approximate method for handling the launch- 
on-time problem. Three representative standard trajec- 
tories were chosen to evaluate the effectiveness of this 
method. Equations 18, 19, and 20 were used to compute 
firing azimuth, and the coast-time correction was deter- 
mined from Eq. 21. Table 1 illustrates the performance 
of the corrective equations. An elaborate JPL trajectory 
program provided the standard and launch-late trajec- 
tories. The unusually small firing-azimuth change for the 
Mars trajectory resulted because the &'/atL was nearly 
zero for this particular standard Mars asymptote and 
launching time. 

The miss distances could have been further reduced, 
had Eq. 18 been successively applied with smaller AtL, 
and had the more exact partials been substituted in the 
Taylor's series expansion for computing firing azimuth. 
The miss distances shown in Table 1 are considerably 
smaller than those which arise from component-error 
sources in present injection-guidance systems. 

Accurate digital-computer programs may be used to 
obtain exact trajectories for the limiting firing azimuths 
associated with a given firing window. If desired, one 
or two additional trajectories might also be obtained 
within the window. Corrective equations could then be 
used with the vehicle guidance system to provide the 
capability for continuous firing within the given window. 

Table 1. Launch-on-time results 

Key pammehrs 

launch-time delay, min 

Launching-azimuth change, 

Coost-time correction, sec 

Miss distonce from target 
center with no correction 
for launch time delay, mi 

Miss distance from target 
center with corrective 
equations but no mid- 
course maneuver, mi 

66-hour 
lunar 

60 
108.0 + 
116.8 

- 175.9 

4.90 x 10' 

190 
(impact) 

66-hour 
lunar 

60 
96.0 + 

105.0 

- 185.3 

4.60x lo' 

350 
(impact) 

~~ 

4.87 x lo" 

1 . m x  10' 

9 
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APPENDIX 
Realistic Crossrange and Crossrange Rate 

Figure A-1 depicts an inertial plumb-line coordinate 
system, defined at the instant of launch. A plumb line 
suspended at the launching site would lie along Y,. The 
downrange or azimuthal heading is defined by X,, and 
2, = X, X Y,. The standard vehicle thrust plane is main- 
tained parallel to the X,, Y, plane. In Fig. A-1, X, Y, 2, 
has been translated to the center of the Earth and desig- 
nated XL YL 2;. 

*. 
Assuming, as in Section 111-B, that Z:, N - KZL, 

Zk -  AAcos (Ap+  K H t )  (A-1) 

Z:, N K-H Asin ( p  + AKn t )  ( A 4  

where 

A = (Zb,,* + K Z&2)M (A-3) 

z;, = V L  cos U L  

ZL, = R, sin uL sin ($, - qL) 
(A-4) 

(A-5) 
7r /3 = sin-’ (KK A-’ Zb,), - - 4 /3 (A-6)  2 2 

(A-7) K = ,,R-3 

When compared with the actual values obtajned from 
the JPL powered-flight trajectory program, Z:, and Zg, 
computed from Eq. A-1 and A-2, still indicated a slight 
amplitude error and phase shift. This discrepancy 
resulted from the basic assumption that e, ‘v - KZ:,, 
which neglected the oblateness of the Earth by assuming 
that the gravitational force was directed towards the 
Earth’s center. 

In comparing the actual with the computed curves of 
crossrange and crossrange rate for trajectories launched at 
different azimuths from the Atlantic Missile Range, it 
was found that excellent agreement (over the initial por- 
tion of flight through in-dane angles less than about 
30 deg) could be realized by using an initial crossrange 

Figure A-1. Plumb-line coordinate system and 
associated quantities 

displacement of approximately half that given by Eq. A-5. 
This result is suggested by the nearly equal contributions 
to (q, - qL) from the gravitational and centrifugal forces 
associated with a rotating, oblate Earth. 

It should be remembered that the reason for obtaining 
crossrange and crossrange-rate expressions was to deter- 
mine the amount and direction of rotation of the launch- 
to-injection plane of motion. This rotation was then used 
to refine the firing azimuth calculation. An analysis of the 
effect of oblateness upon crossrange and crossrange rate 
will not be presented here, Such an analysis, if conducted, 
would indicate a dependence of A, p, and K upon the 
oblateness expression (Ref. 4). The amount of rotation 
of the powered-flight plane of motion can be obtained 
with acceptable accuracy without resorting to a cumber- 
some analysis involving the detailed effects of oblateness. 
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NOMENCLATURE 

unit vector having direction of vehicle- 
thrust-vector projection in local horizontal 
plane at launch (direction defined by uL) 

angular momentum defined by RV cos r 
twice total energy-per-unit mass 
= v2 - &R-' 

time-averaged value of p R 3  over powered 
flight from launch to injection 

unit vector normal to vehicle thrust plane 
defined at launch 

position vector of vehicle 

circular parking-orbit radius 

position vector of Moon at time of expected 
lunar encounter for standard trajectory 

Earth radius at launching site 

unit vector pointing from center of Earth 
through launching site 

unit vector along asymptote to geocentric 
hyperbola for interplanetary trajectories; 
lies along lunar position vector at time of 
expected encounter for lunar trajectories 

inertial velocity vector of vehicle 

circular parking-orbit velocity 

lunar velocity relative to Earth's center at 
standard time of expected lunar encounter 

Earth-surface velocity at launching site 

space-fixed, equatorial coordinate system 

scribes unit vectors i, j, k (see Fig. 1) 

inertial launch-site coordinate system, de- 
fined at instant of launch (see Fig. 2) 

inertial plumb-line coordinate system, de- 
fined at instant of launch (see Fig. A-l) 

vehicle crossrange and crossrange rate for 
simplified mathematical model of Fig. 2 

with X-dxis i u w ~ i i :  i.eiiia1 eqii;ii~x, pie- 

actual vehicle crossrange and crossrange 
rate 

amplitude function representing maximum 
crossrange rate 

phase angle arising from initial crossrange 
displacement 

angle from local horizontal plane to inertial 
velocity vector 

parking-orbit coast-time correction 

launch-time error (positive for a late launch) 

right ascension of launch site 

gravitational constant for Earth (GMJ 

rotation vector of powered-flight plane of 
motion 

launching azimuth; prescribes orientation 
of vehicle thrust vector as measured clock- 
wise from north 

declination of S 
unit vector normal to S and in plane of 
motion (see Fig. 3) 

geodetic latitude of launch site 

geocentric latitude of launch site 

average angular velocity of Earth 

circular parking-orbit conditions 

parameter values at injection 

launch site 

lunar quantities 

plumb-line coordinates 

values associated with standard, no-launch- 
time-error trajectory 

values associated with X, Y, Z coordinate 
system (Fig. 1) 

initial value of a given parameter 
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